基于虚拟仪器1553B总线模块故障诊断系统设计
来源:未知 点击: 发布时间:2024-01-30 16:10

  全称“数字式时分制指令/响应型多路传输数据总线”,是一种串行多路数据总线年代,美国公布了MIL-STD-1553标准,首次应用在F-16A/B战斗机上,成为三代战机航电系统的主要特色之一。随着技术的改进和完善,在1980年之后推出MIL-STD-1553B标准,1553B总线在可靠性高,实时性强等方面优点使它在现代武器系统中越来受到重视。目前,1553B总线广泛应用于各种作战飞机,同时拓展到各种战车、导弹,舰船等武器平台哑铃。

  1553B总线模块涉及的项目种类多,维修保障数量大,要快速完成故障模块的维修和保障有很大难度。为了降低故障定位难度,缩减维修时间,提高维修质量,研究以通用1553B总线模块维修平台为依托的通用1553B总线模块故障诊断系统设计,具有重要的意义。

  分析1553B总线模块的系统结构,系统结构设计如图1所示。1553B总线模块硬件主要包括通信控制器(CPU、EPROM、RAM及时钟复位电路组成,它主要承担着传输层任务,包括控制1553B协议处理器,处理通信错误,响应系统主机命令进行服务等功能)、共享存储器(DPRAM)、1553B协议处理器、双通道总线收/发器和隔离变压器、计时器(实时时钟RTC)、与子系统主机接口控制逻辑、内部控制逻辑和串行口电路

  维修测试平台采用了基于VXI总线虚拟仪器技术。维修测试平台系统硬件平台主要由系统控制器、VXI测试系统、程控电源、通用示波器、PC-MBI模块,多串口卡和测试接口适配器组成。测试系统构成见图2所示。

  1)系统控制器采用1394接口卡和GPIB卡工控机通过1394接口以透明的方式与VXI测试系统内的总线控制模块进行通信:GPIB接口卡实现对程控电源和示波器的控制,在示波器和程控电源内部嵌入的GPIB控制模块以透明方式完成命令翻译,控制程控电源和示波器的操作。

  在测试系统的设计中VXI总线系统为设计的关键部件,测试系统集成采用了VXI机箱,0槽模块、数字测试子系统和I/O模块。

  b.0槽模块:是VXI总线测试系统的控制核心。选取AGILENT公司生产的E8491B模块,包括一个MODID寄存器和一个10MHz时钟源。具有触发功能,可编程8路内部TTL触发信号。

  c.数字测试子系统:采用槽C尺寸的SR2510组成,SR2510模块包括了时序和矢量控制、可配96数字I/O通道。本维修平台为测试模块配置64数字I/O通道。

  3)程控电源:AGILENT公司生产E3631A,该电源的技术指标如下:

  通用示波器采用TEK公司生产TDS3012系列示波器。该示波器主要技术指标如下:

  测试系统中测试接口设计采用了互联结构。形成对外统一的测试接口(主适配器)多层滑动轴承,选用VPC公司的VXI互锁接收机,作为信号连接适配器。由于不同被测对象对外连接器各不相同,根据被测对象特征,设计子适配器,这种方式实现了整个测试系统资源的重复利用,提高了测试系统可扩展性和通用性。

  故障诊断软件平台包括两类:一类是基于虚拟仪器的软件开发平台和用户操作人机交互接口;另一类是1553B总线模块内部CPU开发环境(186监控系统、CCStudio),根据CPU采用的芯片类型的不同,采用开发环境不同。CPU为80C186,开发环境为186监控系统;CPU为TMS320F240或TMS320F2812开发环境CCStudio。

  虚拟仪器基于LabWhadows/CVI作为软件平台,该平台是美国NI公司开发一款交互式C语言开发平台,该软件功能强大、使用灵活的C语言平台用于数据采集分析和显示测控专业工具有机的结合起来。

  维修测试平台设计中,测试软件是整个维修测试平台的核心部分,其中TPS(Test Program Set,TPS)设计考虑模块化,标准化,通用化,可方便移植性于同系列其它1553B总线模块使用。同时TPS设计直接影响到测试覆盖的全面性,是否能够对故障点的准确定位。

  分析1553B总线模块设计性能和功能指标,将1553B总线模块电路分割为最小功能单元电路。由于在1553B总线模块设计中双口存储器(DPRAM)作为子系统主机与模块通信控制器数据交互接口,所以将1553B总线模块功能单元分为四部分,第一部分为模块通信控制器电路测试;第二部分为子系统主机接口电路测试;第三部分为1553B协议接口电路测试;第四部分为复位电路测试压力角,如图3所示。

  通信控制器电路测试包括:EPROM功能单元电路测试、RAM功能单元电路测试、CPU控制DPRAM(右口)电路测试,中断控制器,定时器功能电路测试和复位RTC计数器功能电路测试。

  子系统主机接口电路测试包括:RTC功能单元电路测试、DPRAM(左口)电路测试。

  将E]PROM内的数据读取进行校验,并将校验值与校验和相比较渐开螺旋面,一致则ERPOM功能正常。

  采用典型测试数据方法,包括测试数据如下:步进1,0x0000、ox5555,0xaaaa,0xffff和存储器单元写入单元地址值。该测试方法对RAM的存储体进行了充分的测试,同时对RAM的地址总线和数据总线进行了有效的测试,例如总线是否短接或断路。

  采用典型测试数据方法,包括测试数据如下:步进1,0x0000、ox5555,0xaaaa,0xffff和存储器单元写入单元地址值。该测试方法对DPRAM的存储体进行了充分的测试,同时对DPRAM的地址和数据总线进行了有效的测试,例如总线是否短接或断路。

  通过对开发环境模拟子系统主机中断信号和清主机中断信号,模拟子系统主机的读取中断信号状态,如果与设置一致,则功能正常。

  测试平台配置示波器采集定时器电路的输出信号,测量定时器输出波形,如果按照预期值输出,定时器功能正常。

  通过开发环境访问特定I/O空间单元将RTC清0,然后通过模拟子系统主机访问读取RTC值,如果从0计数,CPU清RTC计数器功能电路工作正常。

  模拟子系统主机设置RTC计数器的值,然后读回RTC值,如果RTC值是在设置初始值的基础上进行计数,则模拟子系统主机访问RTC功能单元电路工作正常。

  采用典型测试数据方法,包括测试数据如下:步进1,0x0000、ox5555,0xaaaa,0xffff和存储器单元写入单元地址值。该测试方法对DPRAM的存储体进行了充分的测试,同时对DPRAM的地址和数据总线进行了有效的测试,例如总线是否短接或断路。

  故障树模型是一个基于被诊断对象结构、特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其它事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。它反映了特征向量与故障向量(故障原因)之间的全部逻辑关系。在故障树分析中,建树是一个关键和基本步骤,建树是否完善将直接影响分析诊断结果的准确性。而建树的关键是要清楚了解所分析的系统功能逻辑关系及故障模式、影响及致命度,建树完善与否直接影响定性分析和定量计算结果是否正确。

  1553B总线B接口电路与子系统主机通过DPRAM(双口存储器)进行交互,子系统主机不直接控制1553B接口协议芯片,通信控制器(CPU等)读取DPRAM中子系统主机命令字,配置1553B协议芯片工作状态。协议芯片接收到1553B总线命令,通过DMA方式,取得内总线控制权,将接收数据写入DPRAM或将发送数据从DPRAM中读出。

  1553B总线B总线B总线通信故障(数据传输错误,总线不响应故障,主机命令不响应)为例,分析影响1553B总线通信正常主要因素:子系统主机正确设置命令字;通信控制正确执行子系统主机设置命令字;通信控制器正确设置1553B协议处理器;1553B协议处理器DMA方式工作正常;1553B收发器变压器正常产生曼码信号。综合以上故障影响因素构建1553B总线 故障诊断实例

  根据故障模型,同时依据维修测试平台进行故障检测和故障排除,以维修案例及数据进行统计,依据故障概率大小编制故障排除流程,将故障率高的故障点、首先进行故障排除。现以1553B总线模块修复性维修为例,选用1553B总线模块“未响应子系统主机命令”的故障现象来描述故障隔离步骤。

  该故障原因主要有两方面:一是子系统主机未正确将主机命令字写入DPRAM存储器;二是通信控制器未正确响应主机命令。

  本文在对1553B总线模块的系统结构和工作原理进行研究、总结的基础上端面作用角,设计通用的1553B总线模块维修测试平台,建立故障模型,按照S1000D标准,将故障现象初拉力、故障诊断和故障定位方法信息化、形成故障诊断专家库,通过良好的用户交互平台,应用于1553B总线模块故障诊断过程,指导1553B总线模块维修工作,对维修效率提高和维修质量的提高有着积极意义